Step of Proof: adjacent-before
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
adjacent-before
:
T
:Type,
L
:(
T
List),
x
,
y
:
T
. adjacent(
T
;
L
;
x
;
y
)
x
before
y
L
latex
by ((RepUR``adjacent l_before sublist`` 0)
CollapseTHEN (((MaAuto
)
CollapseTHEN (((ExRepD
)
Co
CollapseTHEN (Auto'))
))
))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
L
:
T
List
C1:
3.
x
:
T
C1:
4.
y
:
T
C1:
5.
i
: {0..(||
L
|| - 1)
}
C1:
6.
x
=
L
[
i
]
C1:
7.
y
=
L
[(
i
+1)]
C1:
f
:{0..2
}
{0..||
L
||
}. (increasing(
f
;2) & (
j
:{0..2
}. [
x
;
y
][
j
] =
L
[(
f
(
j
))]))
C
.
Definitions
adjacent(
T
;
L
;
x
;
y
)
,
x
before
y
l
,
L1
L2
,
P
Q
,
(
x
l
)
,
[
car
/
cdr
]
,
[]
,
f
(
a
)
,
n
-
m
,
,
l
[
i
]
,
n
+
m
,
#$n
,
t
T
,
{
x
:
A
|
B
(
x
)}
,
,
type
List
,
Type
,
P
&
Q
,
s
=
t
,
increasing(
f
;
k
)
,
{
i
..
j
}
,
||
as
||
,
i
j
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
Lemmas
increasing
wf
,
int
seg
wf
origin